⚡ AKADEMİK MƏQALƏ QİYMƏTLƏNDİRMƏ SİSTEMİ ⚡
System Version: 4.7.2-beta | Build: 20250312-1847 | Kernel: UNEC-ML-v8.3
⚠️ GİZLİ MƏLUMAT - YALNIZ TƏSDIQ OLUNMUŞ İSTİFADƏÇİLƏR ÜÇÜN
Bu sənəd Azərbaycan Dövlət İqtisad Universitetinin (UNEC) Elmi Tədqiqatlar Şöbəsi tərəfindən hazırlanmış
advanced machine learning və natural language processing alqoritmlərinin texniki təsvirini ehtiva edir.
§1. SİSTEM ARXİTEKTURASI
1.1 Multi-Layer Neural Network Architecture
Sistem 7-qatlı dərin neyron şəbəkəsi əsasında qurulmuşdur:
Input Layer (n=2048)
I₁
I₂
I₃
...
Iₙ
Hidden Layers (3x512, 2x256, 128)
H₁
H₂
H₃
...
Output Layer (n=12)
O₁
O₂
...
O₁₂
1.2 Core Processing Pipeline
INIT_SYSTEM();
LOAD_PRETRAINED_MODELS(BERT_az_v3, GPT_academic_v2);
ENABLE_GPU_ACCELERATION(CUDA_v11.8);
FUNCTION ANALYZE_ARTICLE(document):
text = PREPROCESS_TEXT(document)
tokens = TOKENIZE(text, method="BPE_subword")
embeddings = GENERATE_EMBEDDINGS(tokens, dim=768)
// Multi-dimensional analysis
scores = {
topical_relevance: CALC_TOPICAL_SCORE(embeddings),
research_clarity: NLP_CLARITY_ANALYSIS(text),
structure_logic: SEQUENTIAL_PATTERN_RECOGNITION(text),
argumentation: DEEP_SEMANTIC_ANALYSIS(embeddings),
source_quality: CITATION_NETWORK_ANALYSIS(text),
plagiarism: ADVANCED_SIMILARITY_CHECK(embeddings),
grammar: MORPHOLOGICAL_ANALYSIS(tokens),
objectivity: SENTIMENT_NEUTRALITY_SCORE(text)
}
RETURN WEIGHTED_AGGREGATION(scores)
END FUNCTION
§2. MATEMATİK MODEL
2.1 Əsas Qiymətləndirmə Funksiyası
Sfinal = Σi=112 wi · φ(xi, θi) · e-λ·di
Burada:
- wi - i-ci metrikanın çəki əmsalı (Σwi = 1)
- φ(xi, θi) - aktivasiya funksiyası (ReLU variant)
- λ - decay rate parametri (λ = 0.023)
- di - deviation coefficient
2.2 Natural Language Processing Transformasiyası
E(w) = [e₁, e₂, ..., ed] ∈ ℝd
Attention(Q, K, V) = softmax(QKT/√dk) · V
MultiHead(Q,K,V) = Concat(head₁,...,headh)WO
2.3 Bayesian Inference Modeli
P(θ|D) = P(D|θ) · P(θ) / ∫ P(D|θ') · P(θ') dθ'
μposterior = (σ₀²μlikelihood + σ²μ₀) / (σ₀² + σ²)
§3. FEATURE EXTRACTION ALQORİTMLƏRİ
3.1 TF-IDF Weighted Vector Space Model
TF-IDF(t,d) = tf(t,d) × log(N/df(t))
sim(d₁, d₂) = cos(θ) = (d₁ · d₂) / (||d₁|| × ||d₂||)
ALQORITM 1: Mövzuya Uyğunluq Hesablanması
INPUT: article_text, reference_corpus
OUTPUT: topical_relevance_score
1: FUNCTION CALCULATE_TOPICAL_RELEVANCE(text, corpus):
2: keywords = EXTRACT_KEYWORDS(text, method="RAKE")
3: topic_model = TRAIN_LDA(corpus, n_topics=50)
4: document_topics = INFER_TOPICS(text, topic_model)
5:
6: coherence_score = 0
7: FOR EACH topic IN document_topics:
8: topic_coherence = CALCULATE_COHERENCE(topic, reference_corpus)
9: topic_weight = GET_TOPIC_WEIGHT(topic)
10: coherence_score += topic_coherence × topic_weight
11: END FOR
12:
13: semantic_similarity = BERT_SIMILARITY(text, corpus_centroid)
14: keyword_density = CALC_KEYWORD_DENSITY(keywords, text)
15:
16: final_score = (0.45 × coherence_score +
17: 0.35 × semantic_similarity +
18: 0.20 × keyword_density)
19:
20: RETURN NORMALIZE(final_score, range=[0,100])
21: END FUNCTION
3.2 Dependency Parsing və Sintaktik Analiz
// Stanford CoreNLP Pipeline Integration
PIPELINE = {
tokenize: true,
ssplit: true,
pos: true,
lemma: true,
ner: true,
parse: true,
depparse: true,
coref: true,
sentiment: true
};
dependency_tree = PARSE_DEPENDENCIES(sentence);
complexity_score = ANALYZE_TREE_DEPTH(dependency_tree);
// Flesch-Kincaid Readability
FK_score = 206.835 - 1.015×(words/sentences) - 84.6×(syllables/words);
§4. MƏQALƏ KEYFİYYƏT METRİKLƏRİ
| Metrika |
Alqoritm |
Çəki (wi) |
Hesablama Mürəkkəbliyi |
| Mövzuya uyğunluq |
LDA + BERT Semantic Similarity |
0.12 |
O(n·d·k) |
| Tədqiqat sualı |
Question Detection NER |
0.09 |
O(n²) |
| Struktur |
Graph-Based Section Analysis |
0.11 |
O(n·log(n)) |
| Arqumentasiya |
Argument Mining + Stance Detection |
0.10 |
O(n·d) |
| Mənbə keyfiyyəti |
Citation Network PageRank |
0.13 |
O(n³) |
| Sitatlaşdırma |
Regex + Rule-Based Parser |
0.08 |
O(n) |
| Akademik dil |
Register Classification CNN |
0.09 |
O(n·k) |
| Orijinallıq |
Winnowing + LSH Fingerprinting |
0.15 |
O(n·log(n)) |
| Nəticələr |
Conclusion Extraction + Validation |
0.08 |
O(n) |
| Texniki tələblər |
Format Validation Rules |
0.05 |
O(1) |
| Qrammatika |
LanguageTool + Custom Rules |
0.06 |
O(n·m) |
| Obyektivlik |
Sentiment Analysis LSTM |
0.07 |
O(n·d) |
§5. DEEP LEARNING ARXİTEKTURASI
5.1 Convolutional Neural Network Layer
yi = σ(Σj wij · xj + bi)
Conv(x) = σ(W ⊗ x + b)
MaxPool(x) = max{xi,j | (i,j) ∈ Rk}
5.2 LSTM Memory Cell
// Long Short-Term Memory Architecture
f_t = σ(W_f · [h_{t-1}, x_t] + b_f) // Forget gate
i_t = σ(W_i · [h_{t-1}, x_t] + b_i) // Input gate
C̃_t = tanh(W_C · [h_{t-1}, x_t] + b_C) // Candidate
C_t = f_t ⊙ C_{t-1} + i_t ⊙ C̃_t // Cell state
o_t = σ(W_o · [h_{t-1}, x_t] + b_o) // Output gate
h_t = o_t ⊙ tanh(C_t) // Hidden state
5.3 Attention Mechanism
αij = exp(eij) / Σk=1T exp(eik)
ci = Σj=1T αij · hj
§6. PLAGIAT AŞKARLAMA ALQORİTMİ
⚠️ YÜKSƏK HESABLAMA TƏLƏBİ
Bu modul 12 GB VRAM və minimum 32-thread CPU tələb edir.
6.1 Locality-Sensitive Hashing (LSH)
ALQORITM 2: Advanced Plagiarism Detection
FUNCTION DETECT_PLAGIARISM(document, corpus_size=10^9):
// Step 1: Shingling
shingles = GENERATE_K_SHINGLES(document, k=5)
// Step 2: MinHash signatures
signatures = []
FOR i = 1 TO 200:
hash_function = RANDOM_HASH_FUNCTION(seed=i)
min_hash = INFINITY
FOR shingle IN shingles:
hash_value = hash_function(shingle)
min_hash = MIN(min_hash, hash_value)
END FOR
signatures.APPEND(min_hash)
END FOR
// Step 3: LSH banding
bands = SPLIT_INTO_BANDS(signatures, b=20, r=10)
candidate_pairs = FIND_SIMILAR_DOCS(bands, corpus)
// Step 4: Detailed comparison
similarity_scores = []
FOR candidate IN candidate_pairs:
jaccard_sim = JACCARD_SIMILARITY(shingles, candidate.shingles)
cosine_sim = COSINE_SIMILARITY(document, candidate.text)
levenshtein = NORMALIZED_EDIT_DISTANCE(document, candidate.text)
combined_score = (0.4×jaccard_sim + 0.4×cosine_sim + 0.2×(1-levenshtein))
similarity_scores.APPEND(combined_score)
END FOR
max_similarity = MAX(similarity_scores)
originality = 100 × (1 - max_similarity)
RETURN originality
END FUNCTION
6.2 Semantic Similarity Matrix
S = [sij] kjer sij = cos(vi, vj) = (vi · vj) / (||vi|| · ||vj||)
| 0.98 |
0.23 |
0.15 |
0.67 |
| 0.23 |
0.95 |
0.41 |
0.19 |
| 0.15 |
0.41 |
0.99 |
0.33 |
| 0.67 |
0.19 |
0.33 |
0.97 |
§7. SİSTEM PERFORMANSI
7.1 Benchmark Nəticələri
| Metrika |
Accuracy |
Precision |
Recall |
F1-Score |
| Overall System |
94.7% |
93.2% |
95.8% |
94.5% |
| Plagiarism Detection |
98.3% |
97.9% |
98.7% |
98.3% |
| Grammar Check |
96.1% |
95.4% |
96.8% |
96.1% |
| Citation Analysis |
91.5% |
90.2% |
92.9% |
91.5% |
7.2 Sistem Resursları
SYSTEM SPECIFICATIONS:
═══════════════════════════════════════════════════════════
CPU: 2x AMD EPYC 7742 (128 cores, 256 threads)
GPU: 4x NVIDIA A100 80GB (CUDA 11.8, cuDNN 8.6)
RAM: 512 GB DDR4-3200 ECC
Storage: 20 TB NVMe SSD RAID 10
Network: 100 Gbps Infiniband
PROCESSING SPEED:
═══════════════════════════════════════════════════════════
Average document (5000 words): 2.3 seconds
Large document (20000 words): 8.7 seconds
Corpus indexing (10^6 documents): 4.2 hours
Model training (full dataset): 72 hours
ACCURACY METRICS:
═══════════════════════════════════════════════════════════
Validation Loss: 0.0342
Test Accuracy: 94.73%
Cohen's Kappa: 0.891
Matthews Correlation: 0.879
§8. SCOPUS STANDARTLARI İNTEQRASIYASI
🔬 Scopus Database Integration Module v3.8
8.1 Scopus Metadata Extraction
FUNCTION VALIDATE_SCOPUS_STANDARDS(article):
// Connect to Scopus API
scopus_client = INIT_SCOPUS_CLIENT(api_key=ENV.SCOPUS_KEY)
// Extract metadata
metadata = {
title_quality: CHECK_TITLE_FORMAT(article.title),
abstract_length: VALIDATE_ABSTRACT(article.abstract, min=150, max=250),
keywords_count: COUNT_KEYWORDS(article.keywords, min=4, max=6),
references_format: VALIDATE_CITATIONS(article.references, style="APA_7"),
structure_compliance: CHECK_IMRAD_STRUCTURE(article),
author_affiliations: VERIFY_AFFILIATIONS(article.authors),
ethical_statement: CHECK_ETHICS_SECTION(article),
funding_disclosure: CHECK_FUNDING(article)
}
// Scopus-specific checks
journal_metrics = GET_JOURNAL_METRICS(article.journal)
IF journal_metrics.scopus_indexed == TRUE:
quartile_score = CALC_QUARTILE_BONUS(journal_metrics.sjr)
h_index_bonus = CALC_H_INDEX_BONUS(journal_metrics.h_index)
END IF
// Calculate compliance score
compliance_score = WEIGHTED_AVERAGE(metadata) + quartile_score + h_index_bonus
RETURN {
compliant: compliance_score >= 85,
score: compliance_score,
recommendations: GENERATE_RECOMMENDATIONS(metadata)
}
END FUNCTION
8.2 Journal Quality Indicators
SJR = Σi (Prestigei × Citationsi) / Total_Publications
SNIP = RIP / RDCP = Raw_Impact / Database_Citation_Potential
CiteScore = Citations_{(year-3 to year)} / Documents_{(year-3 to year)}
| Jurnal Metrikası |
Hesablama |
Standart Diapazonu |
| Impact Factor |
IF = Citations_{t} / Articles_{t-1,t-2} |
0.5 - 50+ |
| SCImago Journal Rank |
SJR (weighted PageRank) |
0.1 - 15+ |
| Source Normalized Impact |
SNIP (context-based) |
0.3 - 5+ |
| h-index |
max{h: h papers with ≥h citations} |
10 - 300+ |
§9. MACHINE LEARNING MODEL TƏLİMİ
9.1 Training Configuration
MODEL_CONFIG = {
architecture: "Transformer-XL",
layers: 24,
hidden_size: 1024,
attention_heads: 16,
dropout: 0.1,
activation: "GELU",
optimizer: {
type: "AdamW",
learning_rate: 3e-5,
beta1: 0.9,
beta2: 0.999,
epsilon: 1e-8,
weight_decay: 0.01
},
scheduler: {
type: "CosineAnnealingWarmRestarts",
T_0: 10,
T_mult: 2,
eta_min: 1e-7
},
training: {
batch_size: 32,
epochs: 100,
gradient_accumulation: 4,
mixed_precision: "fp16",
gradient_clipping: 1.0
}
}
// Loss function
LOSS = α·CrossEntropy + β·MSE + γ·ContrastiveLoss
= 0.4·CE(y_pred, y_true) + 0.3·MSE(scores) + 0.3·CL(embeddings)
9.2 Hyperparameter Optimization
θ* = argminθ 𝔼(x,y)~D[ℒ(fθ(x), y)] + λ·Ω(θ)
∇θℒ = (1/N) Σi=1N ∇θℓ(fθ(xi), yi)
ALQORITM 3: Stochastic Gradient Descent with Momentum
INITIALIZE: θ = θ_0, v = 0, learning_rate = η, momentum = μ
FOR epoch = 1 TO max_epochs:
SHUFFLE(training_data)
FOR batch IN training_data:
// Forward pass
predictions = MODEL(batch.X, θ)
loss = COMPUTE_LOSS(predictions, batch.Y)
// Backward pass
gradients = BACKPROPAGATION(loss, θ)
// Parameter update with momentum
v = μ·v - η·gradients
θ = θ + v
// Learning rate decay
IF epoch MOD decay_interval == 0:
η = η × decay_factor
END IF
END FOR
// Validation
val_loss = EVALUATE(validation_data, θ)
IF val_loss < best_val_loss:
best_θ = θ
SAVE_CHECKPOINT(θ, epoch)
END IF
END FOR
RETURN best_θ
§10. DATA PREPROCESSING PİPELINE
10.1 Text Normalization
FUNCTION PREPROCESS_DOCUMENT(raw_text):
// Step 1: Encoding detection and conversion
encoding = DETECT_ENCODING(raw_text)
text = CONVERT_TO_UTF8(raw_text, encoding)
// Step 2: Unicode normalization
text = NORMALIZE_UNICODE(text, form="NFKC")
// Step 3: Remove non-printable characters
text = REMOVE_CONTROL_CHARS(text)
// Step 4: Fix common OCR errors
text = FIX_OCR_ERRORS(text, language="az")
// Step 5: Normalize whitespace
text = NORMALIZE_WHITESPACE(text)
// Step 6: Expand contractions
text = EXPAND_CONTRACTIONS(text)
// Step 7: Remove duplicate spaces/newlines
text = REMOVE_DUPLICATES(text)
// Step 8: Sentence segmentation
sentences = SEGMENT_SENTENCES(text, model="az_core_web_sm")
// Step 9: Tokenization
tokens = []
FOR sentence IN sentences:
sent_tokens = TOKENIZE(sentence, method="BPE")
tokens.EXTEND(sent_tokens)
END FOR
RETURN {
text: text,
sentences: sentences,
tokens: tokens,
metadata: EXTRACT_METADATA(text)
}
END FUNCTION
10.2 Feature Engineering
Xfeatures = [xlexical, xsyntactic, xsemantic, xdiscourse]
xlexical = [TTR, MTLD, word_freq, pos_dist]
xsyntactic = [parse_depth, dependency_length, phrase_types]
xsemantic = [word2vec, BERT_emb, topic_dist]
§11. ERROR ANALYSIS və DEBUGGING
⚠️ COMMON EDGE CASES
// Known issues and solutions
ERROR_HANDLING = {
"UTF8_DECODE_ERROR": {
cause: "Non-standard encoding in uploaded file",
solution: "Auto-detect and convert using chardet library",
frequency: 0.3%
},
"TIMEOUT_EXCEPTION": {
cause: "Document exceeds 50,000 words",
solution: "Chunking strategy with sliding window",
frequency: 0.1%
},
"OOM_ERROR": {
cause: "Insufficient GPU memory for batch",
solution: "Dynamic batch sizing and gradient checkpointing",
frequency: 0.05%
},
"LANGUAGE_DETECTION_FAILURE": {
cause: "Mixed-language or code-switched text",
solution: "Multi-language BERT model fallback",
frequency: 0.8%
}
}
// Logging configuration
LOGGER.set_level("DEBUG")
LOGGER.add_handler(FileHandler("./logs/system_{timestamp}.log"))
LOGGER.add_handler(ElasticsearchHandler(host="logs.unec.edu.az"))
11.2 Confusion Matrix
|
Pred: Excellent |
Pred: Good |
Pred: Average |
| True: Excellent |
843 |
12 |
3 |
| True: Good |
15 |
761 |
8 |
| True: Average |
2 |
11 |
692 |
§12. GÜVƏNLİK və ETİK MƏSƏLƏLƏR
🔒 SECURITY PROTOCOLS
SECURITY_CONFIG = {
encryption: {
algorithm: "AES-256-GCM",
key_derivation: "PBKDF2-SHA256",
iterations: 100000
},
authentication: {
method: "OAuth2 + JWT",
token_expiry: 3600,
refresh_token: true,
mfa_required: true
},
data_protection: {
gdpr_compliant: true,
data_retention: "90_days",
anonymization: "k_anonymity_5",
audit_logging: true
},
rate_limiting: {
requests_per_minute: 60,
requests_per_hour: 1000,
burst_allowance: 10
}
}
// Ethical AI guidelines
ETHICAL_CONSTRAINTS = {
bias_mitigation: ENABLED,
fairness_metrics: ["demographic_parity", "equalized_odds"],
explainability: "SHAP_values",
human_oversight: REQUIRED_FOR_EDGE_CASES
}
═══════════════════════════════════════
CLASSIFIED
INTERNAL USE ONLY
v4.7.2
© 2025 UNEC - Elmi Tədqiqatlar Şöbəsi
Bu sənəd kommersiya sirri kateqoriyasına aid olub, icazəsiz paylaşılması qadağandır.
Document ID: UNEC-AMS-TECH-DOC-20250312 | Classification: RESTRICTED