⚡ AKADEMİK MƏQALƏ QİYMƏTLƏNDİRMƏ SİSTEMİ ⚡

System Version: 4.7.2-beta | Build: 20250312-1847 | Kernel: UNEC-ML-v8.3
⚠️ GİZLİ MƏLUMAT - YALNIZ TƏSDIQ OLUNMUŞ İSTİFADƏÇİLƏR ÜÇÜN
Bu sənəd Azərbaycan Dövlət İqtisad Universitetinin (UNEC) Elmi Tədqiqatlar Şöbəsi tərəfindən hazırlanmış advanced machine learning və natural language processing alqoritmlərinin texniki təsvirini ehtiva edir.

§1. SİSTEM ARXİTEKTURASI

1.1 Multi-Layer Neural Network Architecture

Sistem 7-qatlı dərin neyron şəbəkəsi əsasında qurulmuşdur:

Input Layer (n=2048)
I₁
I₂
I₃
...
Iₙ


Hidden Layers (3x512, 2x256, 128)
H₁
H₂
H₃
...


Output Layer (n=12)
O₁
O₂
...
O₁₂

1.2 Core Processing Pipeline

INIT_SYSTEM(); LOAD_PRETRAINED_MODELS(BERT_az_v3, GPT_academic_v2); ENABLE_GPU_ACCELERATION(CUDA_v11.8); FUNCTION ANALYZE_ARTICLE(document): text = PREPROCESS_TEXT(document) tokens = TOKENIZE(text, method="BPE_subword") embeddings = GENERATE_EMBEDDINGS(tokens, dim=768) // Multi-dimensional analysis scores = { topical_relevance: CALC_TOPICAL_SCORE(embeddings), research_clarity: NLP_CLARITY_ANALYSIS(text), structure_logic: SEQUENTIAL_PATTERN_RECOGNITION(text), argumentation: DEEP_SEMANTIC_ANALYSIS(embeddings), source_quality: CITATION_NETWORK_ANALYSIS(text), plagiarism: ADVANCED_SIMILARITY_CHECK(embeddings), grammar: MORPHOLOGICAL_ANALYSIS(tokens), objectivity: SENTIMENT_NEUTRALITY_SCORE(text) } RETURN WEIGHTED_AGGREGATION(scores) END FUNCTION

§2. MATEMATİK MODEL

2.1 Əsas Qiymətləndirmə Funksiyası

Sfinal = Σi=112 wi · φ(xi, θi) · e-λ·di

Burada:

2.2 Natural Language Processing Transformasiyası

E(w) = [e₁, e₂, ..., ed] ∈ ℝd

Attention(Q, K, V) = softmax(QKT/√dk) · V

MultiHead(Q,K,V) = Concat(head₁,...,headh)WO

2.3 Bayesian Inference Modeli

P(θ|D) = P(D|θ) · P(θ) / ∫ P(D|θ') · P(θ') dθ'

μposterior = (σ₀²μlikelihood + σ²μ₀) / (σ₀² + σ²)

§3. FEATURE EXTRACTION ALQORİTMLƏRİ

3.1 TF-IDF Weighted Vector Space Model

TF-IDF(t,d) = tf(t,d) × log(N/df(t))

sim(d₁, d₂) = cos(θ) = (d₁ · d₂) / (||d₁|| × ||d₂||)
ALQORITM 1: Mövzuya Uyğunluq Hesablanması
INPUT: article_text, reference_corpus OUTPUT: topical_relevance_score 1: FUNCTION CALCULATE_TOPICAL_RELEVANCE(text, corpus): 2: keywords = EXTRACT_KEYWORDS(text, method="RAKE") 3: topic_model = TRAIN_LDA(corpus, n_topics=50) 4: document_topics = INFER_TOPICS(text, topic_model) 5: 6: coherence_score = 0 7: FOR EACH topic IN document_topics: 8: topic_coherence = CALCULATE_COHERENCE(topic, reference_corpus) 9: topic_weight = GET_TOPIC_WEIGHT(topic) 10: coherence_score += topic_coherence × topic_weight 11: END FOR 12: 13: semantic_similarity = BERT_SIMILARITY(text, corpus_centroid) 14: keyword_density = CALC_KEYWORD_DENSITY(keywords, text) 15: 16: final_score = (0.45 × coherence_score + 17: 0.35 × semantic_similarity + 18: 0.20 × keyword_density) 19: 20: RETURN NORMALIZE(final_score, range=[0,100]) 21: END FUNCTION

3.2 Dependency Parsing və Sintaktik Analiz

// Stanford CoreNLP Pipeline Integration PIPELINE = { tokenize: true, ssplit: true, pos: true, lemma: true, ner: true, parse: true, depparse: true, coref: true, sentiment: true }; dependency_tree = PARSE_DEPENDENCIES(sentence); complexity_score = ANALYZE_TREE_DEPTH(dependency_tree); // Flesch-Kincaid Readability FK_score = 206.835 - 1.015×(words/sentences) - 84.6×(syllables/words);

§4. MƏQALƏ KEYFİYYƏT METRİKLƏRİ

Metrika Alqoritm Çəki (wi) Hesablama Mürəkkəbliyi
Mövzuya uyğunluq LDA + BERT Semantic Similarity 0.12 O(n·d·k)
Tədqiqat sualı Question Detection NER 0.09 O(n²)
Struktur Graph-Based Section Analysis 0.11 O(n·log(n))
Arqumentasiya Argument Mining + Stance Detection 0.10 O(n·d)
Mənbə keyfiyyəti Citation Network PageRank 0.13 O(n³)
Sitatlaşdırma Regex + Rule-Based Parser 0.08 O(n)
Akademik dil Register Classification CNN 0.09 O(n·k)
Orijinallıq Winnowing + LSH Fingerprinting 0.15 O(n·log(n))
Nəticələr Conclusion Extraction + Validation 0.08 O(n)
Texniki tələblər Format Validation Rules 0.05 O(1)
Qrammatika LanguageTool + Custom Rules 0.06 O(n·m)
Obyektivlik Sentiment Analysis LSTM 0.07 O(n·d)

§5. DEEP LEARNING ARXİTEKTURASI

5.1 Convolutional Neural Network Layer

yi = σ(Σj wij · xj + bi)

Conv(x) = σ(W ⊗ x + b)

MaxPool(x) = max{xi,j | (i,j) ∈ Rk}

5.2 LSTM Memory Cell

// Long Short-Term Memory Architecture f_t = σ(W_f · [h_{t-1}, x_t] + b_f) // Forget gate i_t = σ(W_i · [h_{t-1}, x_t] + b_i) // Input gate C̃_t = tanh(W_C · [h_{t-1}, x_t] + b_C) // Candidate C_t = f_t ⊙ C_{t-1} + i_t ⊙ C̃_t // Cell state o_t = σ(W_o · [h_{t-1}, x_t] + b_o) // Output gate h_t = o_t ⊙ tanh(C_t) // Hidden state

5.3 Attention Mechanism

αij = exp(eij) / Σk=1T exp(eik)

ci = Σj=1T αij · hj

§6. PLAGIAT AŞKARLAMA ALQORİTMİ

⚠️ YÜKSƏK HESABLAMA TƏLƏBİ
Bu modul 12 GB VRAM və minimum 32-thread CPU tələb edir.

6.1 Locality-Sensitive Hashing (LSH)

ALQORITM 2: Advanced Plagiarism Detection
FUNCTION DETECT_PLAGIARISM(document, corpus_size=10^9): // Step 1: Shingling shingles = GENERATE_K_SHINGLES(document, k=5) // Step 2: MinHash signatures signatures = [] FOR i = 1 TO 200: hash_function = RANDOM_HASH_FUNCTION(seed=i) min_hash = INFINITY FOR shingle IN shingles: hash_value = hash_function(shingle) min_hash = MIN(min_hash, hash_value) END FOR signatures.APPEND(min_hash) END FOR // Step 3: LSH banding bands = SPLIT_INTO_BANDS(signatures, b=20, r=10) candidate_pairs = FIND_SIMILAR_DOCS(bands, corpus) // Step 4: Detailed comparison similarity_scores = [] FOR candidate IN candidate_pairs: jaccard_sim = JACCARD_SIMILARITY(shingles, candidate.shingles) cosine_sim = COSINE_SIMILARITY(document, candidate.text) levenshtein = NORMALIZED_EDIT_DISTANCE(document, candidate.text) combined_score = (0.4×jaccard_sim + 0.4×cosine_sim + 0.2×(1-levenshtein)) similarity_scores.APPEND(combined_score) END FOR max_similarity = MAX(similarity_scores) originality = 100 × (1 - max_similarity) RETURN originality END FUNCTION

6.2 Semantic Similarity Matrix

S = [sij] kjer sij = cos(vi, vj) = (vi · vj) / (||vi|| · ||vj||)
0.98 0.23 0.15 0.67
0.23 0.95 0.41 0.19
0.15 0.41 0.99 0.33
0.67 0.19 0.33 0.97

§7. SİSTEM PERFORMANSI

7.1 Benchmark Nəticələri

Metrika Accuracy Precision Recall F1-Score
Overall System 94.7% 93.2% 95.8% 94.5%
Plagiarism Detection 98.3% 97.9% 98.7% 98.3%
Grammar Check 96.1% 95.4% 96.8% 96.1%
Citation Analysis 91.5% 90.2% 92.9% 91.5%

7.2 Sistem Resursları

SYSTEM SPECIFICATIONS: ═══════════════════════════════════════════════════════════ CPU: 2x AMD EPYC 7742 (128 cores, 256 threads) GPU: 4x NVIDIA A100 80GB (CUDA 11.8, cuDNN 8.6) RAM: 512 GB DDR4-3200 ECC Storage: 20 TB NVMe SSD RAID 10 Network: 100 Gbps Infiniband PROCESSING SPEED: ═══════════════════════════════════════════════════════════ Average document (5000 words): 2.3 seconds Large document (20000 words): 8.7 seconds Corpus indexing (10^6 documents): 4.2 hours Model training (full dataset): 72 hours ACCURACY METRICS: ═══════════════════════════════════════════════════════════ Validation Loss: 0.0342 Test Accuracy: 94.73% Cohen's Kappa: 0.891 Matthews Correlation: 0.879

§8. SCOPUS STANDARTLARI İNTEQRASIYASI

🔬 Scopus Database Integration Module v3.8

8.1 Scopus Metadata Extraction

FUNCTION VALIDATE_SCOPUS_STANDARDS(article): // Connect to Scopus API scopus_client = INIT_SCOPUS_CLIENT(api_key=ENV.SCOPUS_KEY) // Extract metadata metadata = { title_quality: CHECK_TITLE_FORMAT(article.title), abstract_length: VALIDATE_ABSTRACT(article.abstract, min=150, max=250), keywords_count: COUNT_KEYWORDS(article.keywords, min=4, max=6), references_format: VALIDATE_CITATIONS(article.references, style="APA_7"), structure_compliance: CHECK_IMRAD_STRUCTURE(article), author_affiliations: VERIFY_AFFILIATIONS(article.authors), ethical_statement: CHECK_ETHICS_SECTION(article), funding_disclosure: CHECK_FUNDING(article) } // Scopus-specific checks journal_metrics = GET_JOURNAL_METRICS(article.journal) IF journal_metrics.scopus_indexed == TRUE: quartile_score = CALC_QUARTILE_BONUS(journal_metrics.sjr) h_index_bonus = CALC_H_INDEX_BONUS(journal_metrics.h_index) END IF // Calculate compliance score compliance_score = WEIGHTED_AVERAGE(metadata) + quartile_score + h_index_bonus RETURN { compliant: compliance_score >= 85, score: compliance_score, recommendations: GENERATE_RECOMMENDATIONS(metadata) } END FUNCTION

8.2 Journal Quality Indicators

SJR = Σi (Prestigei × Citationsi) / Total_Publications

SNIP = RIP / RDCP = Raw_Impact / Database_Citation_Potential

CiteScore = Citations_{(year-3 to year)} / Documents_{(year-3 to year)}
Jurnal Metrikası Hesablama Standart Diapazonu
Impact Factor IF = Citations_{t} / Articles_{t-1,t-2} 0.5 - 50+
SCImago Journal Rank SJR (weighted PageRank) 0.1 - 15+
Source Normalized Impact SNIP (context-based) 0.3 - 5+
h-index max{h: h papers with ≥h citations} 10 - 300+

§9. MACHINE LEARNING MODEL TƏLİMİ

9.1 Training Configuration

MODEL_CONFIG = { architecture: "Transformer-XL", layers: 24, hidden_size: 1024, attention_heads: 16, dropout: 0.1, activation: "GELU", optimizer: { type: "AdamW", learning_rate: 3e-5, beta1: 0.9, beta2: 0.999, epsilon: 1e-8, weight_decay: 0.01 }, scheduler: { type: "CosineAnnealingWarmRestarts", T_0: 10, T_mult: 2, eta_min: 1e-7 }, training: { batch_size: 32, epochs: 100, gradient_accumulation: 4, mixed_precision: "fp16", gradient_clipping: 1.0 } } // Loss function LOSS = α·CrossEntropy + β·MSE + γ·ContrastiveLoss = 0.4·CE(y_pred, y_true) + 0.3·MSE(scores) + 0.3·CL(embeddings)

9.2 Hyperparameter Optimization

θ* = argminθ 𝔼(x,y)~D[ℒ(fθ(x), y)] + λ·Ω(θ)

θℒ = (1/N) Σi=1Nθℓ(fθ(xi), yi)
ALQORITM 3: Stochastic Gradient Descent with Momentum
INITIALIZE: θ = θ_0, v = 0, learning_rate = η, momentum = μ FOR epoch = 1 TO max_epochs: SHUFFLE(training_data) FOR batch IN training_data: // Forward pass predictions = MODEL(batch.X, θ) loss = COMPUTE_LOSS(predictions, batch.Y) // Backward pass gradients = BACKPROPAGATION(loss, θ) // Parameter update with momentum v = μ·v - η·gradients θ = θ + v // Learning rate decay IF epoch MOD decay_interval == 0: η = η × decay_factor END IF END FOR // Validation val_loss = EVALUATE(validation_data, θ) IF val_loss < best_val_loss: best_θ = θ SAVE_CHECKPOINT(θ, epoch) END IF END FOR RETURN best_θ

§10. DATA PREPROCESSING PİPELINE

10.1 Text Normalization

FUNCTION PREPROCESS_DOCUMENT(raw_text): // Step 1: Encoding detection and conversion encoding = DETECT_ENCODING(raw_text) text = CONVERT_TO_UTF8(raw_text, encoding) // Step 2: Unicode normalization text = NORMALIZE_UNICODE(text, form="NFKC") // Step 3: Remove non-printable characters text = REMOVE_CONTROL_CHARS(text) // Step 4: Fix common OCR errors text = FIX_OCR_ERRORS(text, language="az") // Step 5: Normalize whitespace text = NORMALIZE_WHITESPACE(text) // Step 6: Expand contractions text = EXPAND_CONTRACTIONS(text) // Step 7: Remove duplicate spaces/newlines text = REMOVE_DUPLICATES(text) // Step 8: Sentence segmentation sentences = SEGMENT_SENTENCES(text, model="az_core_web_sm") // Step 9: Tokenization tokens = [] FOR sentence IN sentences: sent_tokens = TOKENIZE(sentence, method="BPE") tokens.EXTEND(sent_tokens) END FOR RETURN { text: text, sentences: sentences, tokens: tokens, metadata: EXTRACT_METADATA(text) } END FUNCTION

10.2 Feature Engineering

Xfeatures = [xlexical, xsyntactic, xsemantic, xdiscourse]

xlexical = [TTR, MTLD, word_freq, pos_dist]

xsyntactic = [parse_depth, dependency_length, phrase_types]

xsemantic = [word2vec, BERT_emb, topic_dist]

§11. ERROR ANALYSIS və DEBUGGING

⚠️ COMMON EDGE CASES
// Known issues and solutions ERROR_HANDLING = { "UTF8_DECODE_ERROR": { cause: "Non-standard encoding in uploaded file", solution: "Auto-detect and convert using chardet library", frequency: 0.3% }, "TIMEOUT_EXCEPTION": { cause: "Document exceeds 50,000 words", solution: "Chunking strategy with sliding window", frequency: 0.1% }, "OOM_ERROR": { cause: "Insufficient GPU memory for batch", solution: "Dynamic batch sizing and gradient checkpointing", frequency: 0.05% }, "LANGUAGE_DETECTION_FAILURE": { cause: "Mixed-language or code-switched text", solution: "Multi-language BERT model fallback", frequency: 0.8% } } // Logging configuration LOGGER.set_level("DEBUG") LOGGER.add_handler(FileHandler("./logs/system_{timestamp}.log")) LOGGER.add_handler(ElasticsearchHandler(host="logs.unec.edu.az"))

11.2 Confusion Matrix

Pred: Excellent Pred: Good Pred: Average
True: Excellent 843 12 3
True: Good 15 761 8
True: Average 2 11 692

§12. GÜVƏNLİK və ETİK MƏSƏLƏLƏR

🔒 SECURITY PROTOCOLS
SECURITY_CONFIG = { encryption: { algorithm: "AES-256-GCM", key_derivation: "PBKDF2-SHA256", iterations: 100000 }, authentication: { method: "OAuth2 + JWT", token_expiry: 3600, refresh_token: true, mfa_required: true }, data_protection: { gdpr_compliant: true, data_retention: "90_days", anonymization: "k_anonymity_5", audit_logging: true }, rate_limiting: { requests_per_minute: 60, requests_per_hour: 1000, burst_allowance: 10 } } // Ethical AI guidelines ETHICAL_CONSTRAINTS = { bias_mitigation: ENABLED, fairness_metrics: ["demographic_parity", "equalized_odds"], explainability: "SHAP_values", human_oversight: REQUIRED_FOR_EDGE_CASES }
═══════════════════════════════════════
CLASSIFIED INTERNAL USE ONLY v4.7.2

© 2025 UNEC - Elmi Tədqiqatlar Şöbəsi
Bu sənəd kommersiya sirri kateqoriyasına aid olub, icazəsiz paylaşılması qadağandır.
Document ID: UNEC-AMS-TECH-DOC-20250312 | Classification: RESTRICTED